A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction
نویسندگان
چکیده
Nearest neighbor parameters for estimating the folding energy changes of RNA secondary structures are used in structure prediction and analysis. Despite their widespread application, a comprehensive analysis of the impact of each parameter on the precision of calculations had not been conducted. To identify the parameters with greatest impact, a sensitivity analysis was performed on the 291 parameters that compose the 2004 version of the free energy nearest neighbor rules. Perturbed parameter sets were generated by perturbing each parameter independently. Then the effect of each individual parameter change on predicted base-pair probabilities and secondary structures as compared to the standard parameter set was observed for a set of sequences including structured ncRNA, mRNA and randomized sequences. The results identify for the first time the parameters with the greatest impact on secondary structure prediction, and the subset which should be prioritized for further study in order to improve the precision of structure prediction. In particular, bulge loop initiation, multibranch loop initiation, AU/GU internal loop closure and AU/GU helix end parameters were particularly important. An analysis of parameter usage during folding free energy calculations of stochastic samples of secondary structures revealed a correlation between parameter usage and impact on structure prediction precision.
منابع مشابه
A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37 degrees C. The parameters were tested by predicting the secondary structures of sequences with...
متن کاملNNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure
The Nearest Neighbor Database (NNDB, http://rna.urmc.rochester.edu/NNDB) is a web-based resource for disseminating parameter sets for predicting nucleic acid secondary structure stabilities. For each set of parameters, the database includes the set of rules with descriptive text, sequence-dependent parameters in plain text and html, literature references to experiments and usage tutorials. The ...
متن کاملImproved RNA secondary structure prediction by maximizing expected pair accuracy.
Free energy minimization has been the most popular method for RNA secondary structure prediction for decades. It is based on a set of empirical free energy change parameters derived from experiments using a nearest-neighbor model. In this study, a program, MaxExpect, that predicts RNA secondary structure by maximizing the expected base-pair accuracy, is reported. This approach was first pioneer...
متن کاملEnergy Parameters and Novel Algorithms for an Extended Nearest Neighbor Energy Model of RNA
We describe the first algorithm and software, RNAenn, to compute the partition function and minimum free energy secondary structure for RNA with respect to an extended nearest neighbor energy model. Our next-nearest-neighbor triplet energy model appears to lead to somewhat more cooperative folding than does the nearest neighbor energy model, as judged by melting curves computed with RNAenn and ...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کامل